Code: 20BS1303

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

DISCRETE MATHEMATICAL STRUCTURES

(Common for CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Show that $I(A \rightarrow B) \land A I \rightarrow B$ is a	L2	CO1	7 M			
		tautology.						
	b)	Construct Principal of Conjunctive Normal	L3	CO2	7 M			
		Forms(PCNF) and Principal of Disjunctive						
		Normal Forms (PDNF) of the formula.						
		$(\neg A \lor \neg B) \rightarrow (A \leftrightarrow \neg B)$						
OR								
2	a)	Express the converse, inverse, contra	L2	CO1	7 M			
		positive of 'If you work hard then you will						
		be rewarded'.						
	b)	What is Principle Conjunctive Normal	L3	CO2	7 M			
		Form(PCNF)? Construct the PCNF of						
		$(\neg A \rightarrow B) \land (C \leftrightarrow A)$						

		UNIT-II	- <u>-</u>		
3	a)	Show that the premises "One student in this	L3	CO2	7 M
		class knows how to write program in			
		JAVA", and "Everyone who knows how to			
		write the programme in JAVA can get a			
		high paying job imply a conclusion			
		"someone in this class can get a high paying			
		job".			
	b)	Let $Q(x)$ be the sentence that " $x=x+1$ ",	L3	CO2	7 M
		What is the truth value of the quantification			
		$\exists x \ Q(x)$ where the universe of discourse is			
		the set of real number?			
	•	OR			
4	a)	Let $L(x, y)$ be the predicate "x likes y" and	L3	CO2	7 M
		let the universe of discourse be the set of all			
		people. Use quantifiers to express each of			
		the following statements.			
		(i) Everyone likes everyone.			
		(ii) Everyone likes someone.			
		(iii) Someone does not like anyone.			
	b)	Using rules of inference, show that 's' is a	L3	CO2	7 M
		valid inference from the premises			
		$p \rightarrow \neg q, \ q \lor r, \ \neg s \rightarrow p \text{ and } \neg r$			
		UNIT-III			
5	a)	Solve the recurrence relation $a_n = a_{n-1} + 2 a_{n-2}$	L3	CO3	7 M
		with $a_0 = 2$ and $a_1 = 7$.			
	b)	Solve the recurrence relation	L3	CO3	7 M
		$a_n = 2 \ a_{n-1} + 3 \ * 2^n$			
	1	Page 2 of 4	1	1	

		OR			
6	a)	Solve the recurrence relation	L3	CO3	7 M
		$a_n = 7a_{n-1} - 10 \ a_{n-2}$ with $a_0 = 3$ and $a_1 = 5$.			
	b)	Solve the recurrence relation	L3	CO3	7 M
		$a_n = a_{n-1} + 3^n$			
		UNIT-IV			
7	a)	Suppose that the relation \mathbf{R} on a set is	L4	CO4	7 M
		represented by the matrix.			
		$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$			
		$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$			
		Is R reflexive, symmetric and/or anti-			
		symmetric? Justify your answer.			
	b)	Determine whether $(P(S), \subseteq)$ is a lattice	L2	CO4	7 M
		where S is a set $\{A,B,C\}$ and $P(S)$ is the			,
		power set of S.			
		OR			
8	a)	Determine whether the relation \mathbf{R} on the set	L2	CO4	7 M
		of all people is reflexive, symmetric, anti-			
		symmetric and/or transitive where			
		$(a, b) \in \mathbb{R}$ if and only if a is teller than b .			
	b)	Examine whether the Posets ({1, 2, 3,4,5}, /)	L4	CO4	7 M
		and ({1, 2, 4, 8, 16}, /) are lattices.			
	T	UNIT-V			
9	a)	Give an example of a graph that has neither	L2	CO4	7 M
		an Eulerian circuit nor a Hamiltonian			
		circuit.			

